
Research Institute for Advanced Computer Science
NASA Ames Research Center

An Implementation of the

Look-Ahead Lanczos Algorithm
for Non-Hermitian Matrices

Part I

Roland W. Freund, Martin H. Gutknecht,

and Noel M. Nachtigal

RIACS Technical Report 90.45

November 1990

(NASA-CR-188909) AN IMPLEMENTATION OF THE

LOOK-AHEAD LANCZOS ALGORITHM FOR

NON-HERMITIAN MATRICES, PART] (Research

Inst. for Advanced Computer Science) 34 p
CSCL 09B G3/61

N92-I0311

Unclas

0043111

#

,,A,

An Implementation of the

Look-Ahead Lanczos Algorithm
for Non-Hermitian Matrices

Part I

Roland W. Freund, Martin H. Gutknecht,

and No_i M. Nachtigal

Tile Research Institute for Advanced Computer Science is operated by

Universities Space Research Association (USRA),

The American City Building, Suite 311, Columbia_ MD 21044_ (301)730-2656.

Work reported herein was supported in part by DARPA via Cooperative

Agreement NCC 2-387 between NASA and USRA.

An Implementation

of the Look-Ahead Lanczos Algorithm
for Non-Hermitian Matrices
Part I

ROLAND W. FREUND

ResearchInstitute for Advanced Computer Science

MARTIN H. GUTKNECHT

Interdisciplinary Project Center for Supercomputing

NOI_L M. NACHTIGAL

MassachusettsInstitute of Technology

The nonsymmetric Lanczos method can be used to compute eigenvaluesof large sparse
non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However,
the original Lanczos algorithm is susceptible to possible breakdowns and potential insta-
bilities. We present an implementation of a look-ahead version of the Lanczos algorithm
which overcomesthese problems by skipping over those steps in which a breakdown or
near-breakdown would occur in the standard process.The proposed algorithm can handle
look-ahead steps of any length and is not restricted to steps of length 2, as earlier im-
plementations are. Also, our implementation has the feature that it requires roughly the
samenumber of inner products as the standard Lanczosprocesswithout look-ahead.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear
Algebra-eigenvMues; linear systems (direct and iterative methods); sparse and very large

systems; G.4 [Mathematies of Computlng]: Mathematical Software

General Terms: Large sparse linear systems and eigenvalue problems, iterative methods

Additional Key Words and Phrases: Non-Hermitian matrices, Lanczos method, look-ahead

steps

The work of R. W. Freund and N. M. Nachtigal was supported in part by DARPA via

Cooperative Agreement NCC 2-387 between NASA and the Universities Space Research

Association (USRA).

Authors' addresses: R. W. Freund, RIACS, Mail Stop Ellis Street, NASA Ames Re-

search Center, Moffett Field, CA 94035, and Institut ffir Angewandte Mathematik, Uni-

versit_it Wfirzburg, D-W8700 Wfirzburg, Federal Republic of Germany; M. H. Gutknecht,

Interdisciplinary Project Center for Supercomputing, ETH Zfirich, ETH-Zentrum, CH-

8092 Zfirich, Switzerland; N. M. Nachtigal, Department of Mathematics, Massachusetts

Institute of Technology, Cambridge, MA 02139.

1. INTRODUCTION

In 1950, Lanczos [14] proposed a method for successivereduction of a given, in general

non-Hermitian, N × N matrix A to tridiagonal form. More precisely, the Lanczos procedure

generates a sequence H (n), n = 1, .,9..., of tridiagonal n × n matrices which, in a certain

sense, approximate A. Furthermore, in exact arithmetic and if no breakdown occurs, the

Lanczos method terminates after at most n (__ N) steps with H (n) a tridiagonal matrix

which represents the restriction of A or A T to an A-invariant or AT-invariant subspace

of C y respectively. In particular, all eigenvalues of H (n) are also eigenvalues of A, and,

in addition, the method also produces basis vectors for the A-invariant or AT-invariant

subspace found.

In the Lanczos process, the matrix A itself is never modified and it appears only in

the form of matrix-vector products A. v and A T. w. Because of this feature, the method

is especially attractive for sparse matrix computations. Indeed, in practice, the Lanczos

process is mostly applied to large sparse matrices A, either for computing eigenvalues

of A or -- in the form of the closely related biconjugate gradient (BCG) algorithm [15]

for solving linear systems Ax - b. For large A, the finite termination property is of

no practical importance and the Lanczos method is used as a purely iterative procedure.

Typically, the spectrum of H (n) offers good approximations to some of the eigenvalues of

A after already relatively few iterations, i.e. for n _ N. Similarly, BCG m especially if

used in conjunction with preconditioning m often converges in relatively few iterations to
the solution of Az "- b.

Unfortunately, in the standard Lanczos method a breakdown -- more precisely, di-

vision by 0 -- may occur before an invariant subspace is found. In finite precision arith-

metic, such exact breakdowns are very unlikely; however, near-breakdowns may occur

which lead to numerical instabilities in subsequent iterations. The possibility of break-

downs has brought the nonsymmetric Lanczos process into discredit and has certainly

prevented many people from using the algorithm on non-Hermitian matrices. Note that

the symmetric Lanczos process for Herrnitian matrices A is a special case of the general

procedure in which the occurrence of breakdowns can be excluded.

On the other hand, it is possible to modify the Lanczos process such that it skips over

those iterations in which exact breakdown would occur in the standard method. This was

already observed by Gragg [8, pp. 222-223] and, in the context of the partial realization

problem, by Kung [13, Chapter IV] and Gragg and Lindquist [9]. However, a complete

treatment of the modified Lanczos method and its intimate connection with orthogonal

polynomials and Pad_ approximation was presented only recently, by Gutknecht [10, 11].

Clearly, in finite-precision arithmetic, a viable modified Lanczos process also needs to skip

over near-breakdowns. Taylor [19] and Parlett, Taylor, and Liu [18], with their look-ahead

Lanczos algorithm, were the first to propose such a practical procedure. However, in [19,

18], the details of an actual implementation are worked out only for look-ahead steps of

length 2. We will use the term look-ahead £anczoJ method in a broader sense to denote

extensions of the standard Lanczos process which skip over breakdowns. Finally, note that,

in addition to [10], there are several other recent papers dealing with various aspects of

look-ahead Lanczos methods (see [1, 2, 5, 7, 12, 17]).

The main purpose of this paper is to present a robust implementation, including

FORTRAN code, of the look-ahead Lanczos method for general complex non-Hermitian

matrices. Our intention was to develop an algorithm which can be used as a black box.

In particular, the code can handle look-ahead steps of any length and is not restricted

to steps of length 2. On many modern computer architectures, the computation of inner

products of long vectors is a bottleneck. Therefore, one of our objectives was to minimize

the number of inner products in our implementation of the look-ahead Lanczos method.

Indeed, the proposed algorithm requires the same number of inner products as the classical

Lanczos process, as opposed to the look-ahead algorithm described in [19, 18], which always

requires additional inner products. In particular, our implementation differs from the one

in [19, 18] even for look-ahead steps of length 2.

This paper consists of Part I and Part II. The outline of the Part I is as follows. In

Section 2, we recall the standard nonsymmetric Lanczos method and its close relationship

with orthogonal polynomials. Using this connection, we then describe the basic idea of

the look-ahead versions of the Lanczos process. In Section 3, some further notation is

introduced. In Section 4, we outline the sequential look-ahead algorithm, and in Section 5,

we give details of its actual implementation. In Section 6, we sketch the block version of

the look-ahead Lanczos method. In Section 7, we make some concluding remarks.

In Part II [6] of the paper, we describe how the look-ahead Lanczos process can be

used to compute approximate solutions to Ax - b, solutions which are defined by a quasi-

minimal residual (QMR) property. We also show that BCG iterates -- when they exist

can be easily obtained from quantities generated by the QMR method. Moreover in

Part II, we report numerical experiments with the sequential look-ahead Lanczos algorithm

applied to nonsymmetric eigenvalue problems and to solving nonsymmetric linear systems.

Finally, the actual codes for the sequential look-ahead algorithm and for the associated

QMR algorithm appear in the Appendix to Part II.

Throughout the paper, all vectors and matrices, unless otherwise stated, are assumed

to be complex. As usual, M T _ (m.ii) and M H -- (_j_) denote the transpose and the

conjugate transpose, respectively, of the matrix M = (m_j). The set of singular values

of M is denoted by a(M), with amax(M) and a_n(M) the largest and smallest singular

value of ;¥I, respectively. The vector norm I]zll = _ is always the Euclidean norm and

I[MI] = _m_x(M') denotes the corresponding matrix norm. Moreover, the notation

K,(c,B) := span{c, Bc,... ,B"-lc}

is used for the nth Krylov subspace of C N generated by c E C N and the N x N matrix B.

denotes the set of all complex polynomials of degree at most n. Finally, it is always

assumed that A is a complex, in general non-Hermitian, N x N matrix.

2. BACKGROUND

In this section, we briefly recall the classical nonsymmetric Lanczos method [14] and its
closerelationship with formally or_.hogonal polynomials (FOPs hereafter). Using this con-

nection, we then describe the basic idea of the look-ahead Lanczos algorithm.

Given two non-zero starting vectors vl 6 C N and wx 6 C N, the standard nonsymmet-

ric Lanczos method generates two sequences of vectors {v,}L=l and {w,}L=l such that,

for n = 1,...,L,

span{vl,v2,...,v,} = K,(vl,A),

span{wl,w2,...,w,} = Kn(wl,AT),
(2.1)

and

wTvj = di6ij, with di # O, for all i,j = 1,...,n. (2.2)

Here 6ij denotes the Kronecker delta• The actual construction of the vectors Vn and wn is

based on the three-term recurrences

'Vn+l "- Avn -- O_nVn -- i_nVn-l_

Wn+l -" ATwn -- OgnWn -- '8nWn-l_

(2.3)

where

O/n

wTAv,

dll '

d_

B,,- d-i-, d.= ,,,5,.,

are chosen to enforce (2.2). Note that, for n = 1, we set '81 = 0 and v0 = w0 = 0 in (2.3).

Also, letting

V(")=[vl v2 ... v.] and W(")=[wl w2 -.-w.] (2.4)

denote the matrix whose columns are the first n of the vectors vj and wj, respectively, and

H (") :=

letting

ax ,82 0 ... 0

1 0_2

0 "'. "'. ". 0

°° "" •* '811"1.

0 .-. 0 1 a.

denote the tridiagonal matrix containing the recurrence coefficients, we can rewrite (2.3)

as

AV (") = V(")H (r') + [0 ... 0 v,+_],
(2.5)

ATw (n) = W(n)H (n) + [0 ... 0 Wn+I].

Moreover, the biorthogonality condition (2.2) reads

(W ("))TV(n) D (") = diag(dl, d2,. •., d,). (2.6)

Now, let L be the largest integer such that there exist vectors vn and wn, n = 1,..., L,

satisfying (2.1) and (2.2). Note that L < N and that, in view of (2.3), L is the smallest

integer such that

wT+lvL+I = 0. (2.7)

Moreover, let

L,. = Zr(vl,A) := dimKy(vl,A) and Lt = L_(wl,A T) := dimKg(wl,A T) (2.8)

denote the grade of vl with respect to A and the grade of wl with respect to A T, respectively

(cf. [20, p. 37]). There are two essentially different cases for fulfilling the termination

condition (2.7). The first case, referred to as regular termination, occurs when VL+ 1 = 0

or wL+ 1 -- 0. Clearly, if vL+ 1 -- O, then L -- L,. and the right Lanczos vectors vl,..., VL,

span the A-invariant subspace KL, (Vl, A). Similarly, if w/,+l = 0, then the left Lanczos

vectors wl,...,wLt span the AT-invariant subspace KL_(wl,AT). Unfortunately, it can

also happen that the termination condition (2.7) is satisfied with v$+ 1 # 0 and Wr+l _ O.

This second case is referred to as serious breakdown [20, p. 389]. Note that, in this case,

L < L, := min{Li, Lr}

and the Lanczos vectors span neither an A-invariant nor an AT-invariant subspace of C N.

It is the possibility of serious breakdowns, or, in finite precision arithmetic, of near-

breakdowns, that has brought the classical nonsymmetric Lanezos algorithm into discredit.

However, by means of a look-ahead procedure, it is possible to leap -- except for the very

special case of an incurable breakdown [19] -- over those iterations in which the standard

algorithm would break down. Next, using the intimate connection between the Lanczos

process and FOPs, we describe the basic idea of the look-ahead Lanczos algorithm.

First, note that

K,(v,,A) =- {_I'(A)vl I_ • T_,,-1},

K,(w,,A T) = {_(AT)wl [_ • _,,-1}.
(2.9)

In particular, in view of (2.3), for n = 1,..., L,

v,, = _,,-l(A)v, and w, = ¢,,_I(AT)wl, (2.10)

4

where _.-1 E 79.-1 is a uniquely definedmonic polynomial. Then, introducing the inner
product

(¢, _) := (¢(.4T)w 1) T (q/(A)vl) -- wT_(A)_(A)Vl (2.11)

and using (2.1), (2.9), and (2.10), we can rewrite the biorthogonality condition (2.2) in
terms of polynomials:

(_,-1, _I,) = 0 for all _ E T',-2 (2.12)

and

(_.-,, _.-1) # 0. (2.13)

Note that, except for the Hermitian case, i.e. A = A H and Wl = _1, the inner product

(2.11) is indefinite, Therefore, in the general case, there exist polynomials _ :fi 0 with

"length" (_, _) = 0 or even (k_, kg) < 0.

A polynomial _,-1 E P,,-1, _,,-1 _ 0, that fulfills (2.12) is called a FOP (with

respect to the inner product (2.11)) of degree n - 1 (see e.g. [3], [4], [10]). Note that the

condition (2.12) is empty for n = 1, and hence any _0 = 70 _ 0 is a FOP of degree 0.

From (2.12),

_,-l(i) -- 3'0 + 3'iA +... + %-1A "-1

is a FOP of degree n- 1 if, and only if, its coefficients 70,-.-, T,-] are a nontrivial solution
of the linear system

Here

m0 ml

m 1 ."

m2

• o

F/2n_ 2 • . .

m2 . . , ran_ 2

. •

rn2n--5

rf/2n--5 rtR2n_ 4

3"o "1
|

3'1 [
3'2 [=--3'.--1

• |

- 3"n--2

mj:--wTAJvl=(1, M), j = 0,1,...,

[rt'Ln_ 1

_'/l n

rn,+l (2.14)

L rn2n-]

are the moments associated with (2.11). A FOP _,-a is called regular if it is uniquely

determined by (2.12) up to a scalar, and it is said to be singular otherwise. Remark that

FOPs of degree 0 are always regular. By means of (2.14), one easily verifies that a regular

FOP _,-1 has maximal degree n-1. In particular, a regular FOP is unique if it is required

to be monic. Moreover, singular FOPs occur if, and only if, the corresponding linear system

(2.14) has a singular coefficient matrix, but is consistent. If (2.14) is inconsistent, then

no FOP _,-1 exists. This case is referred to as deficient By relaxing (2.12) slightly, one

can define so-called deficient FOPs (see [10] for details). Simple examples (see Section 13)

show that the singular and deficient cases do indeed occur. Thus, regular FOPs _,-1 need

not exist for every degree n - 1. We would like to stress that this phenomenon is due to the

indefiniteness of (2.11). For a positive definite inner product (., .), unique monic formally

orthogonal polynomials always exist.

Finally, given a regular FOP _,-1, it is easily checked whether a regular FOP of

degree n exists. Indeed, using (2.14), one readily obtains the following

5

Lemma. Let _.__ be a regular FOP (with respect to the innerproduct (2.11))of degree

n - 1. Then, a regular FOP of degree n exists if, and only if, (2.I3) is satisfled.

Let us return to the standard nonsymmetric Lanczos process (2.3). Using (2.7), (2.10),

(2.11), and the above lemma, we conclude that the termination index L is the smallest

integer L for which there exists no regular FOP of degree L. In particular, a serious

breakdown occurs if, and only if, no regular FOP exists for some L < L,.

On the other hand, there is a maximal subset

{nl,n2,...,nj} C{1,2,...,L,}, nl :=1<n2 <...<nj<_L,, (2.15)

such that, for each j = 1,2,..., J, there exists a monic regular FOP _nj-1 E 7_ni-1. Note

that nl = 1 in (2.15) since g'0(A) = 1 is a monic regular FOP of degree 0. It is well-

known that three successive regular FOPs g',b_l_l, g_n_-l, and g',i+ _ 1 are connected via

a three-term recurrence. Consequently, setting, in analogy to (2.10),

V.# -- q/n/-l(A)vl and w.i - _./_I(AT)wl, (2.16)

we obtain two sequences of vectors {vat }£I and {wn,}i= I which can be computed by

means of three-term recurrences. These vectors will be called regular vectors, since they

correspond to regular FOPs; the starting vectors vl and wx are always regular. The look-

ahead Lanczos procedure is an extension of the classical nonsymmetric Lanczos algorithm;

in exact arithmetic, it generates the vectors v,_ and w,j, j = 1,...,J. If nj = L,

in (2.15), then these vectors can be complemented to a basis for an A-invariant or A T_

invariant subspace of C N. An incurable breakdown occurs if, and only if, n.r < L, in

(2.15). Finally, note that

T wTt)niw,jv= =0 for all v E K.s-l(vl,A), w E Kni-I(wl,AT),

j = 1,...,J.
(2.17)

The look-ahead procedure we have sketched so far only skips over exact breakdowns. It

yields what is called the nongenerie Lanczos algorithm in [10]. Of course, in finite precision

arithmetic, the look-ahead Lanczos algorithm also needs to leap over near-breakdowns.

Roughly speaking, a robust implementation should attempt to generate only the "well-

defined" regular vectors. In practice, then, one aims at generating two sequences of vectors

{v., k } f=, and {w.,, } f:, where

{.j.}f=, _c j, := i, (2.1s)

is a suitable subset of (2.15). Note that, in (2.18), we set jl = 1, since vl and wl are always

regular. The problem of how to determine the set (2.18) of indices of the "well-defined"

regular vectors will be addressed in detail in Section 4.

6

In order to obtain complete basesfor the subspacesK,(vl,A) and K,(wl,AT), we

need to add vectors

vn E K,(vl,A) \ I(.n-l(vl,A) and Wn E Kn(wl,A T) \ Kn-I(wl,AT),

n = njk_ 1 + 1,...,ni_ - 1, k = 2,3,...,K,

(2.19)

to the two sequences {v,i_)_.=l and {wni,} tck=l, respectively. Clearly, (2.19) guarantees

that (2.1) remains valid for the look-ahead Lanczos algorithm. The vectors in (2.19) are

called inner vectors. Moreover, for each k, the vectors vn, n = nj_, nj_ + 1,..., njk+_ - 1,

and correspondingly for w,, are referred to as the kth block. The inner vectors of a block

built because of an exact breakdown correspond to singular or deficient FOPs, while the

inner vectors of a block built because of a near-breakdown correspond to polynomials which

in general are combinations of regular, singular, and deficient FOPs. We will refer to both

the regular and the inner vectors v,, and w,, generated by the look-ahead variant as right

and left Lanczos vectors, in analogy to the notation of the standard nonsymmetric Lanczos

algorithm.

So far, we have not specified how to actually construct the inner vectors. The point is

that the inner vectors can be chosen such that the v,,'s and w,,'s from blocks corresponding

to different indices k are still biorthogonal to each other. More precisely, with V (n) and

W (") defined as in (2.4), we have, in analogy to (2.6),

(w(n))Tv(n) "- D ("), n = nj_ - 1, k = 2,3,... ,K. (2.2o)

Here, D (") is now a nonsingular block diagonal matrix with k - 1 blocks of respective

size (nit+, - n j,) x (ni,+: - n j,), l -- 1,..., k - 1. Similarly, (2.5) holds, for n = njk - 1,

k = 2, 3,..., K, with H(") (cf. (3.5)) now a block tridiagonal matrix with diagonal blocks

of size (nj_+, - n j,) × (ni_+, - nj,), I = 1,..., k - 1.

There are two fundamentally different approaches for constructing inner vectors with

the property (2.20). In both cases, we generate the inner vectors using a simple three-term

recurrence. However, in the first approach, each inner vector in a block is biorthogonalized

against the previous block as soon as it is constructed. This variant will be called the

sequential algorithm. In the second approach, the entire block is constructed before it is

biorthogonalized against the previous block and, possibly, depending on the size of the

current block, against vectors from blocks further back. This variant will be called the

block algorithm. The sequential algorithm is more suitable for a serial computer, while the

block algorithm is more suitable for a parallel computer. In this paper, we will focus on the

sequential algorithm and its implementation, and we will only sketch the block algorithm.

Finally, two more notes. First, the inner product (2.11) could have been defined as

(_, @) := (_(AH)w 1) H (@(A)Vl) = w_ _(A)_(A)vl

7

and the algorithms can be formulated equally well in either terms. We use the transpose
becan_eit simplifies the formulas. Second,in the rest of the paper, wewill use the notation
nk := njk for the indices of the "well-deflned" regular vectors. However, notice that there

is no guarantee that the indices nk generated by the look-ahead Lanczos algorithm in finite

precision arithmetic actually satisfy (2.18).

3. NOTATION

In this section, we introduce some further notation.

We will use the following indices:

• n -" 1, 2,... are the indices of the Lanczos vectors v, and w,.,;

• l = 1, 2,... is used as a counter for the blocks;

• nt, l = 1, 2,..., nl := 1, are the indices of the computed regular vectors; note that nt

is also the index of the vector at the beginning of the lth block;

• hi := nt+l - hi, I = 1, 2,..., is the size of the/th block;

• For given n, k = k(n) is the number of the block which contains the Lanczos vectors

v,, and w,; note that nk is the index of the last computed regular vector with index

< n;

• v and # are 0-based indices used to count inside a block;

• i, j, and m are general purpose indices.

For reasons of stability, we will compute scaled versions of the right and left Lanczos

vectors, rather than the "monic" vectors v, and w, (cf. (2.16)) corresponding to monic

FOPs. A proven choice (see [18], [19]) is to scale the Lanczos vectors to have unit length.

By _3,_ and tb, we denote the scaled versions defined by

v. = s._. and w. = t.@., s. := I1_-I1,_- := I1_-II- (3.1)

The scale factors s, and t, in (3.1) can easily reach the overflow or underflow limits; hence,

t s
instead of storing them directly, we store s'A'a-8,-1' t_-1' and _, and we never compute s,

or t, directly. Furthermore, in order to save work, the vectors will not actually be scaled

at every step. Instead, we store vectors _,, and _,, with scale factors an and _,, such that

3, = a,, and tb, =(,¢., a,, _. > 0, (3.2)

and we actually carry out the scaling only when a,_ or _, approach the overflow or underflow

limits. (The scale factors a, are not to be confused with the singular values amin and am_x.)

We identify blocks by their number l. Capital letters with subscript l denote matrices

whose columns are all the vectors from block I. For example,

= ... l and W, = [+., +.,+, ...]

are the matrices containing the "monic" right Lanczos vectors and the scaled left Lanczos

vectors corresponding to block l, respectively. By St and Tt, we denote the diagonal

matrices whose diagonal entries are the scaling factors, as defined in (3.1), corresponding

to block I. Note that

= ff,s , and Wt = fVt .

9

Similarly, Zt and -_ denote the diagonal scaling matrices containing the scalar factors from

(3.2) corresponding to block l, and then

and W,=$,Z,.

Capital letters with superscripts (") indicate matrices which contain quantities from

all previous iterations up to step n. For example, in addition to (2.4), we denote by

"V(") and I_(") the matrices whose columns are the first n scaled right and left Lanczos

vectors, respectively; similarly, S (") and T OO are the diagonal matrices containing the

corresponding scaling factors from (3.1). In view of (2.5) and (2.20), we then have, for

n=l,2,...,

AV (") = _z(")S(")H(")(S(")) -_ + [0

ATI_ (") -- I_I(")T(")H(")(T(")) -I + [0

(3.3)

and

Here

(p_-(.))r_,(.)= (T(.))-ID(.)(S(-))-I.

i 82 0 ... ! 1

72 a2 "•.

H (") := -..

&
0" 7k ak

(3.4)

(3.5)

is a n x n block tridiagonal matrix with blocks of the form

"_ ,.• ,, • ..,

1 "

O ,. ••

0 -.. 0 1

71 =

"0 0 1
• o

", 0

• , •

t

0 0

(3.6)

The blocks $1 are in general full matrices. Notice that H (") is an upper Hessenberg matrix•

For l < k := k(n) the matrices at, _t, and "rt are of size hi x hi, hi-1 x ht, and hz x hi-l,

respectively. The matrices ak, _k, and 7k corresponding to the current, i.e. kth, block are

of size hi, x hk, hk-1 x hk, and ht, x hk-1, respectively, where hk := n + 1 - nk. Notice

that in general the kth block is not a complete block; it is complete if, and only if, n + 1

is the index of the next computed regular vector• In (3.4), the matrix

= diag(W Y,,WIV=,...,W[V,) (3.7)

10

is block diagonal with nonsingular blocks WTF_, l = 1, 2,..., k - 1. Its last block W[Vk,

and hence D (") itself, is nonsingular if the kth block is complete.

Furthermore, the following notation will be used. We set

/t'(") := S('_)E(")(S(")) -' and M, :'- (I,RdT_)-II'R¢ "T.

Generally, a - (tilde), as e.g. in 5,+a, denotes intermediate quantities. A:,,,, means the

mth column of A, while Ai:j,m means elements i through j of the ruth column of A.

We will assume that the vectors in a block are generated using a polynomial recursion
of the form

e,+, (z)=(z- C,,)e,, (z)- ,7,,0,,_, (z), u=O,l,... ,
(3.8)

e__(_) = o, eo(_) = 1, ,7o = o.

For instance, a practical choice for the polynomials in (3.8) are suitably scaled and trans-

lated Chebyshev polynomials, so that the inner vectors are generated by the Chebyshev

iteration [16]. Finally, O,,(A) will be denoted by just O,, whenever the meaning is clear
from the context.

11

4. THE SEQUENTIAL ALGORITHM

The sequentialversion of the algorithm biorthogonalizeseachinner vector in a block against

the vectors in the previous block as soon as the vector is constructed, and biorthogonallzes

the regular vectors against the previous two blocks.

Suppose we have already completed n steps of the algorithm. Hence, vn and w, are

the last generated Lanczos vectors and k = k(n) is the index of the last block. If v,,+l and

w,,+l are constructed as inner vectors, then they are given by

_)n-t-1 _ Avn -- _n_n;_ vn _ r]n_n_ ?3n_l,

COn+I "- ATwn -- _n-nk Wn _ r]n-n_ Wn-1,

v.+, = _.+, - yk_,(w[_l yk__)-' w[__.+l

= _,,+, - Vk-l(W[_ 1Vk-,)-' wr_,Avn,

T -1 T ~_.+a = _.+_ -- Wk-_(Wi__Vk-a) W__xv.+l

W [rlrrT Tr _t-lW T_--- Wn-I-1 -- k-l_,VVk_ 1 vk--1) k-lAVn,

or, in terms of scaled vectors, by

'-qnq-1 _rtq-1 = A73.
8n

_n--r*u On 8n--I

8n

- #k__(fVLIfZk_x)-_fV[_,AO.,
"_n+l ^
_Wn+ 1 = ATlbn --

tn

tn_l

tn

_ k_l.Lk_l,.,_k_lL, VVk_ 1 t'k- 1tn

If v,+l and w,,+l are regular vectors, then they are given by

_n+l -- Avn,

COn+I -- ATwn,

Vn+ 1

Wn+l

.+,- y,,(wr_,y__,)-'w[_,_.+l- v_(w[v_)-aw[_.+,

_.+, - V__,(W[_,V__,)-IW[_,A_. - v_(w[vk)-'w_a..,

co.+_- w__a(w[_,vk_x)-,w[_,_.+,- w_(w?y_)-,w[_.+,

co.+,- w__l(wL_ v__,)-' w[__av. - W_(W[V_)-' w[ao.,

12

or, in terms of scaledvectors, by

.Sn-+-I
_Vn+l = A_n

Sn

-

tn+----_ltbn+l = ATCvn
tn

sn w T c.-1 i,;rT ¢t-V. k-1 k-lO _x vv _lvk-)-aWr-xA .

- _nlPdkTkS[.'(i?vTek)-'_Td_n.

(4.2a)

(4.26)

Here we used the fact that at step n, the inner vectors v, and (when appropriate) v,-1

are already biorthogonal to the previous block Wk-1. Note that using the recursion to

compute v-+l and w,,+l in the case of the regular vectors is redundant, since the regular

vectors axe then biorthogonallzed against the vectors in block k, which includes the vectors
involved in the recursion.

If v,+l and w,+l axe inner vectors, the size of the current incomplete block k is

increased by 1; if they axe regular vectors, then the kth block is complete, and a new

block, the (k + 1)st is started with v,+1 and w,+l as its first vectors. The decision on

whether to construct v,+l and w,+l as inner or as regular vectors is based on three different

criteria, see (4.10--4.12). If at least one is satisfied, then vn+l and w,+l axe constructed as

inner vectors, otherwise, they axe constructed as regular vectors. Next, we motivate the
three criteria.

First, recall (cf. (3.7)) that v.+l and w,+x are regular vectors if, and only if, wTvk is

nonsingular. Therefore, we check whether this matrix is singular or close to singular. The

singular value decomposition (SVD) of I/;vTvk is computed, and an inner step is performed
if

) < tot. (4.3)

Here toI is a suitably chosen tolerance. For example, Parlett [17] suggests tol = e1/4 or

toI = e 1/3, where e denotes the roundoff unit. In view of (4.3), it is guaranteed that

complete blocks of constructed Lanczos vectors satisfy

a_i.(l_T_) >_ tol, l= 1,2,

Note that, by [17, Theorem 10.1], (4.4) together with (3.4) and (3.7) imply

(4.4)

tol tol

O'mi.(_ "(")) > _ and ami.(fV (n)) > -_,
n=nl-1, I=1,2, (4.5)

13

Furthermore, for the vectors corresponding to each block, we have

tol tol

O'min(Y/) > _// and O'min(_"/) :> _//,
l= 1,2,

Remark that the columns of Q(n) and I_¢"('_) are unit vectors and that amin(l_') respectively

amin(l_) is a measure of the linear independence of these vectors. In particular, (4.5)

ensures that the Lanczos vectors remain linearly independent.

In the outlined algorithm, the block biorthogonality (3.4) and (3.7) is enforced only

between two or three successive blocks. Unfortunately, in finite precision arithmetic,

biorthogonality of blocks whose indices are far apart is typically lost. Consequently, in

practice, (4.5) is no longer guaranteed to hold and thus (4.4) alone does not ensure that

the computed Lanczos vectors are sufficiently linearly independent. Indeed, numerical tests

confirmed that, if the look-ahead strategy is based only on criterion (4.3), the algorithm

may produce within a block Lanczos vectors which are almost linearly dependent. When

this happens, the algorithm never completes the current block, i.e. it has generated an

"artificial" incurable breakdown.

The situation just described occurs if, roughly speaking, a regular vector v,+l is com-

puted whose component Avn E K,+I (vl, A) is dominated by its component in the previous

Krylov space Kn(vl, A) (and similarly for Wn+l). In order to avoid the construction of

such regular vectors, we check the/1-norm of the coefficients for fr__a in (4.1a) and fzk in

(4.1b) and compute v,+l as a regular vector only if

nk--I

Z I((I'_rT_ l_rk_l)-ll_r[_aA_n)j] < fac" IIAll (4.6)

and

E]((I?V[Vk)-xI?VTA_n)J[<- fac. HAl[. (4.7)
j_'lrl, k

Here fac is a suitably chosen factor. In analogy, by (4.2a) and (4.2b), wn+l is constructed

as a regular vector only if

and

S___tnE sj/--'J[((I)d/Vk)-' 12d/Av")Jl -< fac. [[A[].
j----nk

(4.9)

14

By combining (4.7) and (4.9), wearrive at the criterion (4.11) given below for performing
an inner step. Notice that (4.6) and (4.8) involve quantities from the previous block k - 1.

Hence, if (4.6) or (4.8) were violated, one would need to go back and construct the previous

regular vectors v, k and w,_ and the kth block differently. In order to avoid this, we check

for (4.6) and (4.8) while building block k - 1, which results in criterion (4.12) below for

performing an inner step.

To summarize, we next describe one step of the sequentia/algorithm.

DESCRIPTION OF ONE STEP OF THE SEQUENTIAL ALGORITHM:

s (12VTT_k), and "Given 73,_, d_., a,, _,, s-Aa- _-a' _, k = k(n),Sn_ 1 , gnk_x:n_-l,n.

Compute _-+1 = A_3,, _-+1 = Arzb,.

Compute

1_ _ /_
Vn+l--'_n+l-- k-1 k-1 n k x:n_-l,n_

O" n

Wn+l -- _-Dn+l
o _1

I s. Wk_l__k_iTk_lSk_li_ik_l:n__l,n.
_. t,,

Compute d_T_).+1.

Compute the SVD of (I'_rTvk).

Set

i/L_ 0 r -- (O'min (rv'V[_"k))

If not inner, then

< tol.

Call BUILDH1 to compute/']r,_:n,, = (I_vTvk)-I I$'rA_3,.

Set

(4.10)

(4.11)

If not inner, then

Build v,+l and w,+l as regular vectors:

15

Call SCALE to scale the vectors.

Compute ° T 2Wn+lUn+l •

Call BUILDH2 to compute

.,:.,.+1 = (/_,)-'W/a_.+,.
Set

iIl2_er -- ({n ,))
j=n_ sj I_n+l j-=

(4.12)

If inner, then

Build v,+l and wn+a as inner vectors:

else

Call SCALE to scale the vectors.

Compute "° T .-.Wn+lUn+l •

Set k - k(n 4- 1) = k(n).

Call UPDATE to update (l)dTlYk).

Call BUILDH2 to compute H%_,.._-1,.+1 = (l_kr-11;'k-1)-ll_-lA_-+ _"

Set f-/._:n,n "- -_'._:.,n and f/n_:,_,.+l =/_,_:n,.+l.

Set k -- k(n 4- 1) -- k(n) 4- I.

Set (I)¢'Tv,) -T o"- O'n+l _n+l Wn+ 1Vnq-l.

Set f/,+l,n -
8n

16

5. IMPLEMENTATION DETAILS

In this section, we describe in detail the actual implementation of the routines BUILDH1,

BUILDH2, SCALE, and UPDATE used in the sequential algorithm, as well as the

procedure for estimating fac (cf. 4.6-4.9). Note that in the actual codes, these routines

-- except for SCALE -- do not appear explicitly; rather, they are coded inline, and

appear only as logical blocks.

5.1. BUILDH1

BUILDH1 takes as input (l_dT_'k):,n_._+l, (I_vTvk) -1, and an_._vT_.+l, and returns

Consider a term of the formwTAvn, nk <_ j _ n, n = n_+ 1-1. Let v = j-nk,

p = n - nk. We distinguish two cases:

(i) j=n.

We compute the wTAv,_ term directly, since we do not "know all the terms in the
recurrence for either vector.

(ii) nk <_j <_n--1.

Here,

wTAvnk+ _l -- (O_(Ar)w.k)TA(Ou(A)v.k)

= wrn_ OvAeuv. _

= wT_AO.Ouv._

= w_(e,,+x + i,.e,. + ,7,,e,,_x)e,,v._
T T

all of which are terms which have already been computed as part of wTvk. Hence, we

h ave:

(VT AO. = (Wk T_ "I)T AO"

= TkT[wTACjn ... wTaA£j, wTAg.] T

= T_ T[''" (wj+l + _,wi +rluwi-1)TOn "'"

wT+, + + ,.=5,

17

where j = nk, ..., nk+, - 2. With this, Hr,),:n,n -" (I?vT_rt,)-II;VTAvn" For the zDTA_n

term, we use:

tbTASn -- zbT(Afin - _?k-1/t.___:n_-a,.)

oT_
"-" O'n_nW n _]n+l

because this formulation has better numerical properties.

18

5.2. BUILDH2

The logical block BUILDH2 takes as input a.+l, _-k, _-1' z_,_.+l, and the last

column of (I_V'[_ I Vk-x)-1, and returns/_,,_,.,,-I,,+I.

Consider a term of the form wTAv,+1 , nk_ I <_ j <_ nk - 1, nk - 1 <_ n <_ nk+ i - 2.

Let v = j - nk_1, g = n - nk. We distinguish two cases:

(i) j = -k - 1.

TAv.+, = (e.(Ar).,_,)TA..+,

-- W T OvAvn+I
n/j-- 1

= W T AOvvn+l
Nk-- I

---wT _w+l"

Here we used the fact that the polynomial for vn+] is orthogonal to the polynomials

in blocks nk_ 1 and nk-2, which appear in the expression for the polynomial for w.h.

(ii) nk_ 1 _ j _ nk -- 2.

wTAv.+, -_ (e,,(AT)w.,_,)TAv.+I

"- w T evAvn+l
nk-- I

-- W T AOvvn+l
nk-- 1

= w T (0,,+1 + ¢.,0., + m,O,,-1)V.+l
nJ,_ 1

"-O.

Hence, we have:

Hnk- t:n_ -1,n+l = (mLle,_,)-l mL,

= (_I]'T_ 1 _'k--1)--1 (Wk-1 T;21)TA6n+I

=
T

19

=(I?vT_Ivk-1)-IT_'T [o ... 0 (tn. dJn.)T_n+X] T

T
tn ^ T=(_VLI_,_I)-1[o ... o .,r:__1_,.,_.+1]
_n _" *T " IT

J
,- _n " T _ T _ --1

= _.+_¢.,.r__ _.,_.+_(w___Vk-_):,h._1.

2O

5.3. SCALE

SCALE takes as input an, _. _r,+l, tD.+l, _nn and returns _3.+1, tb.+l, an+l, _n+l Sn+I

and _ It computes the scale factors s.+l and t.+l so that _3.+1 and zb.+l both
_n+l "

are unit vectors. This gives:

Sn+-"'_l_(o'n+l_n.l.1)=Sn]

The algorithm is as follows:

O'n+ 1

_n+l

If either s. a. or $. _n is small, we have found an invariant subspace.

=!
87

1
"--_.

If a,,+l is too small or too large, then

Vn+l _ Un+l_n+l

O'n+l -_ 1.

If _.+1 is too small or too large, then

IDn+l "- _n+lWn+l_

_.+1 = 1,

= I1 .+1II,

_n tn+l tn _

Un+l -- 73n+1_

_3n+l = Wn+l.

21

5.4. UPDATE

UPDATE takes as input _.+1, _.+1 • T o, w.+lv.+l, and (12v'TQk). It appends a new row and

column to the matrix (I?VTQk). First note that (wTvk) is symmetric, hence only its upper

triangular part has to be constructed: Let wi and vj be two vectors from the current block,

and v = i - n_, p = j - nk be the corresponding block indices.

Then,

This shows that an element on the ruth diagonal can be computed from elements on

the previous two diagonals and previous elements on the ruth diagonal, leaving only the

main diagonal and the first superdiagonal to be computed by inner products. Hence, the

complete hk x hk matrix (wTvk) corresponding to the complete kth block can be built

with only 2hk - 1 inner products.

To update (T'VT'_'k), we then have:

_T+l_n+l oT ."-- O'n+,_n+lWn+lVn+l

f /
= _T a. - s._la._l .))8n O'n r_n--nl*'t')n--1

22

_T ~
8n _{Wn tlnq. 1 -T*Cn--nk Wn Un_r

n Sn+l

3n--I drn--I _T* '_
3n crn _n--n_ W n vn-1 g

8n+l _ _n-n_'wn Vn--l_

1 W T _3it_.r+,_i = _ -+_

__ 1 T
-- _W i l/n+l

$ n-t- 1 ___'t" t.T13
= _i n_-_+l wi n+l_

wherei=nk,...,n.

23

5.5 Estimating fac

Recall that the checks (4.6-4.9) are used to ensure that the Lanczos vectors are suffi-

ciently linearly independent to avoid artificial incurable breakdowns. However, numerical

experience with matrices whose norm is known indicates that setting fac = 1 is too strict

and results in artificial incurable breakdowns. A better setting seems to be fac -- 10, but

even this is dependent on the matrix. In addition to estimating fac, in practice one is

faced with the problem of estimating the matrix norm as well. This problem becomes even

more complicated when solving linear systems, because one usually replaces the origina/

system by a preconditioned one. Finally, in practice there is a/so the issue of a maximal

block size, which is a user-specified value related to limits on available storage. To solve

the problems of estimating norms and a suitable factor fac, as well as coping with lim-

ited storage and yet allowing the algorithm to proceed as far as possible, we propose the

following procedure.

Suppose we arbitrarily set []A[[= 1, where A denotes the matrix actually used in gen-

erating the Lanczos vectors, thus including the case when we are solving a preconditioned

linear system. Then we are left with estimating just fac, which is done dynamically. In

each block, whenever an inner vector is built due to (4.11) or (4.12), the algorithm keeps

track of the size of the terms that have caused (4.11) or (4.12) to be true. If the block

closes, then this information is discarded. If, however, the algorithm is about to run out

of storage, then fac is replaced with the smallest value which has caused an inner vector

to be built, and the block is rebuilt. This time, the updated value of fac is guaranteed

to pass at least once the checks in (4.11) and (4.12), and hence the block is guaranteed to

dose. This frees up the storage that was used by the previous block, thus guaranteeing

that the algorithm can proceed (the procedure extends easily to the case when the current

block is the first one).

This procedure allows then the algorithm to run until a block is built entirely due to

(4.10). This situation represents an incurable breakdown, given the limits on storage, and

forces the algorithm to stop.

24

6. THE BLOCK ALGORITHM

The block version of the algorithm differs from the sequential algorithm in that it generates

the entire block before biorthogonalizing it against the previous block. This makes it more

efficient on a parallel machine. For INBLOCK, we then have

Vn+l "- snAvn - 8n_n--n_ Vn -- Sn--lrln--n_ Vn--1,

Wn+l -- tnATWn -- tn_n-n_ tVn -- tn-lrln-n_ ZVn-1.

In addition, depending on the recursion used, one might want to monitor the norms of the

vectors and scale when needed, to ensure numerical stability. We now want to biorthogo-

nalize the new block against the previous vectors. Let j denote the index of vector vj in

the block, v i = Gj,(A) v,_, [_ = j - nk. We want

We have

W •.. Wn_,_i.__ 1 Wnk--I._ • "" w._-I]Tvi = O.

Wl " " " Wnk --l,i--I _nl --# " " " Wn_,--I]T I}j

• .]r O (A) v,,-- [el " " Wnj,--_--i Wnk--_ • " Wni--I

= [O,(AT)wl ... O_,(AT)w.,_I,_I O_,(Ar)w,,-j,

=[0 ... 0 • -.. ,]T,

O_(Ar) wn,_l]T• • • _nk

where the last p entries, denoted by ,, are generally non-zero. On one hand, the regular

polynomial for vn_ is orthogonal to all polynomials of degree less than nk; on the other

hand, multiplying the polynomials for the previous vectors by e_, raises their degree by

#, thus raising the degree of the last /_ polynomials to nk or more, thus introducing

the non-zero entries. Furthermore, in biorthogonalizing vj against wn_-_,, one introduces

components along the other vectors in v,___,'s block, as v.k_ _, is not biorthogonai to the

vectors in its own block• Hence, to biorthogonalize vj against the previous vectors, we

need to biorthogonallze it against all the vectors in the blocks containing v.__l, to v,__l.

Let 77 denote the number of the block containing v.,__,, r/ _< k - 1. Then we have for
NEXTXY

(6.2)

25

,,+i = s,,A.(-s.¢,,_,,_., + s.-i_.-.,_.-i),

,,+ = t.,A T_b,,(--t.G_,,, _v,, + t.__r],,_,,,tb.__),

t_n-t-1 "- _n+l/Sn+l_

_b,,+l "" w,,+l/t,,+x.

The terms in parentheses in (6.3) and (6.4) axe not strictly necessary, since one then

biorthogonallzes against these vectors, but they could enhance the numerical stability. If

the size of the current block is at most the size of the previous block plus 1, then we have

nt,+l - nt, _< nk - nt,_ a + 1 _ nt,_ _ _< 2nt, - nt,+l + 1 ,_,

nk_ I < n/_ - (nk+ 1 - nt: -- 1) ¢=_nk_ a _< nk --/an, az

r/ =k-l,

which shows that under these conditions, the formulas (6.1) and (6.2) for Vk and Wk reduce

to just two terms. Here/_,,,_z is the largest value of/z. Finally, we note that the products

of the form Mj VI, that appear above have the structure

[i......i]=

since the regular vector is biorthogonal to allprevious blocks.

Computing f./(nk-1)istrickier,since we modify the vectors used in the inner recursion.

Nevertheless, H(,,k-1) retains the block tridiagonal structure (3.5). We will show this by

induction. Assumethat (3.3) and (3.5) hold for alln = n_ - 1, l = I,2,...,/c- I. Thus

A_ = _,-1A + _,_, + _,+_,+1, _= 1,2,... ,k - 1. (6.5)

26

We need to show that (6.5) also holds for I -- k. For V_, we have

Agk = AV_S_ I

=A(_,,- f',_,u__,_ - _,_,u,_=_,..... _',M,_)S;'

= (f',a,+[0 ... 0 _.+,])S;'-A'_,_,M,_,¢,S;'....

- A V,TM,I (TkS_ x

= (_,,s,+ _',_,M,_,_,,+...+ _',M,_',)s,s;'

+[0 ... 0 _.+as.+a +'Qk-xMk-x_.+x +_7kMk_.+x]S_ "x

- (e,_,___+ _',_=s,_,+e,_,_,_,)M,_=_,S;'

- (e,_&_, +_-,_,,_._,+e,_,_,_,)M,_,e.s;'

..... + +

= +...

+ f/'k-2 (&kMk-2- _i.-xM,-.--6k-,Mk-2- "_k-2Mt-3) l_kS_"

+ "("k-1(Mk-, 17_6k + [0

- %-lMk-29k) SEa

+gk (s_a_ +[o ... o

+ _'.+,(s.+, [o ... o

• .. 0 M_,-_£_,,+_]-&k-_Mk-_Vk

M_,_,,+_] - _M_-I V_,) S'_ _

e_]S;I),

where e_ is the first column of the identity matrix. Suppose now we multiply the equation

on the left by l_,-a. Then on the right hand side, only the I?,__1 term survives, as all

the other blocks are biorthogonal to l_,__a by construction. In addition, on the left hand

side, the term is also zero, again by biorthogonality. Hence, the coefficient of l)'__a in the

above e.,cpression is zero. Similarly, by multiplying on the left by lZd_, l_V,+_, ..., 1_-2,

one shows that in fact all the coefficients up to t;'_-2 are zero. Hence, we are left with:

27

The coei_cient matrices &k, _k, and "_k+l are easily recognized. Note that the matrix &k

which appears on the diagonal of/_ is a comrade matrix (from the &k and vn+l terms), but

in addition, the first row fills in (from the "_k term). This is different from the sequential

case, where the diagonal blocks are just comrade matrices.

Finally, we would like to stress that -- even if long recurrences (of more than two

terms) occur in the updates (6.1) and (6.2) for V_ and Wk -- the matrices AVk, Vk+l, V_,

and Vk-1 (and similarly for the W matrices) are still connected via a three-term recursion,

cf. (6.5). Both the sequential and the block algorithm generate upper Hessenberg matrices

H (n) with the same block tridiagonal structure. This is important if the block algorithm is

used for eigenvalue computations or in conjunction with the QMR approach (see Section 9)

for solving linear systems.

28

7. CONCLUDING REMARKS

We have presented the details of an implementation of the look-ahead Lanczos algorithm

for non-Herrnitian matrices. Our implementation can handle look-ahead steps of any length

and is not restricted to steps of length 2, as earlier implementations are. Also, the proposed

algorithm requires roughly the same number of inner products as the standard Lanczos

process without look-ahead. It was our intention to develop a robust algorithm which can

be used in a black box solver.

This paper is continued in Part II [6]. There, a robust black box solver for non-

Hermitian linear system, the QMR algorithm based on the look-ahead Lanczos algorithm,

is presented. Also, in [6], numerical experiments, both with the implementation of the

look-ahead Lanczos method proposed here and with the QMI_. algorithm, are reported.

Finally, for the case of real nonsymmetric matrices A, the FORTRAN programs for these

algorithms are listed in Part II.

In the future, we plan to also provide FOR.TR.AN codes for complex non-Hermitian

matrices. Often when complex matrices arise in practical applications, they are complex

symmetric. For this important special case, the look-ahead Lanczos algorithm can be

arranged such that left and right Lanczos vectors coincide, and thus work and storage is

halved. We also plan to provide FORTRAN codes for the resulting complex symmetric

variant of the look-ahead Lanczos algorithm.

In the present paper, we have only outlined a block version of the look-ahead Lanczos

algorithm which appears to be better suited for parallel computers. Details of an actual

implementation and experiments with it will be presented elsewhere.

29

REFERENCES

[1]

[2]

[3]

[5]

[el

['z]

[8]

[9]

[lO]

[11]

(12]

[13]

[14]

BOLEY, D., ELHAY, S., GOLUB, G. H., AND GUTKNECHT, IV[. H. Nonsymmet-

ric Lanczos and finding orthogonal polynomials associated with indefinite weights.

Numerical Analysis Report NA-90-09, Stanford, August 1990.

BOLEY, D., AND GOLUB, G. H. The nonsymmetric Lanczos algorithm and control-

lability. Numerical Analysis Report NA-90--06, Stanford, May 1990.

BREZINSKI, C. Pad_-Type Approzirnation and General OrthogonaI Polynomiab.

Birkh_.user, Basel, 1980.

DRAUX, A. Polyndrne80rthogonau.z Formels - Applicationa. Lecture Notes in

Mathematics, vol. 974, Springer, Berlin, 1983.

FREUND, R.W. Conjugate gradient type methods for linear systems with com-

plex symmetric coefficientmatrices. Technical Report 89.54, RIACS, NASA Ames

Research Center, December 1989.

FREUND, R. W., AND NACHTIGAL, N.M. An implementation of the look-ahead

Lanczos algorithm for non-Hermitian matrices, Part If.Technical Report 90.46, RI-

ACS, NASA Ames Research Center, November 1990.

FREUND, R. W., AND NACHTIGAL, N.M. QMR: a quasi-m/nimal residual method

for non-Hermitian linear systems. Technical Report, RIACS, NASA Ames Research

Center, 1990, in preparation.

GRAGG, W.B. Matrix interpretations and applications of the continued fraction

algorithm. Rocky Mountain J. Math. ,_(1974), 213-225.

GRAGG, W. B., AND LINDQUIST, A.

Algebra Appl. 50 (1983), 277-319.

On the partial realizationproblem. Linear

GUTKNECHT, M.H. A completed theory of the unsymmetric Lanczos process and

related algorithms, Part I. IPS Research Report No. 90-10, Zfu'ich, June 1990.

GUTKNECHT, M.H. A completed theory of the unsymmetric Lanczos process and

related algorithms, Part II. IPS Research Report No. 90-16, Zfrich, September 1990.

JOUBERT, W. Lanczos methods for the solution of nonsymmetric systems of linear

equations. In Proceedin98 of the Copper Mountain Conference on Iteratire Methoda,

April 1-5, 1990.

KUNG, S. Multivariable and multidimensional systems: analysis and design. Ph.D.

Dissertation, Stanford University,Stanford, June 1977.

LANCZOS, C. An iterationmethod for the solution of the eigenvalue problem of linear

differentialand integraloperators. J. Rea. Natl. Bur. Stand. 45 (1950), 255-282.

3O

[15] LANCZOS, C. Solution of systems of linear equations by minimized iterations. J.

R_s. Natl. Bur. S_and. 49 (1952), 33-53.

[16] MANTEUFFEL, T.A. The Tchebychev iteration for nonsymmetric linear systems.

Numer. Math. 28 (1977), 307-327.

[17] PARLETT, B. N. Reduction to tridiagonal form and minimal realizations. Preprint,
Berkeley, January 1990.

[18] PARLETT, B. N., TAYLOR, D. R., AND LIU, Z.A. A look-ahead Lanczos algorithm

for unsymmetric matrices. Math. Comp. 44 (1985), 105-124.

[19] TAYLOR, D.R. Analysis of the look ahead Lanczos algorithm. Ph.D. Dissertation,

University of California, Berkeley, November 1982.

[20] WILKINSON, J. H.

Oxford, 1965.
The Algebraic Bigenvalue Problem. Oxford University Press,

31

